Secure and Resilient **Cyber-physical Systems**

Arupjyoti Bhuyan Jed Haile

Matthew Anderson

Michael Cutshaw Paul Talbot

Ruby Nguyen

Red Teaming Artificial Intelligence Zero-Day Attacks

www.inl.gov

Work supported through the INL Laboratory Directed Research & Development (LDRD) Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517."

- An Innovative Secure & Energy Efficient Sub-Terahertz Wireless System for Sixth-generation (6G)
- Secure and Resilient Machine Learning System for Detecting Fifth-generation (5G) Attacks including
- Automated Malware Analysis Via Dynamic Sandboxes
- Signal Decomposition for Intrusion Detection in Reliability Assessment in Cyber Resilience
- A quantitative approach to multiple critical supply chain resilience assessment

Battelle Energy Alliance manages INL for the U.S. Department of Energy's Office of Nuclear Energy

Secure & Energy Efficient Sub-Terahertz Wireless System for 6G

Arupjyoti (Arup) Bhuyan (INL), Robert Heath (North Carolina State University)

Need and Significance

- Required energy efficient 6G low resolution multiple-input and multiple-output (MIMO) systems degrades security.
- This research proposes to prove the principle that security can be designed into low resolution 6G MIMO system that operates in the sub-Terahertz (100-300 GHz) bands.

• Successful conclusion will lead to secure next generation cellular systems worldwide.

Approach and Innovative Aspects

- Use directional modulation (DM) in low resolution systems
- Transmit artificial noise and symbols to increase secrecy rate/capacity

Summary of Results

4	 - 1	T	25
+ Consoitu			0.0

"Physical Layer Security at a Point-to-Point MIMO System With 1-Bit DACs and ADCs", IEEE Wireless Communications Letters, May 2023.
"Directional Modulation-Aided Secure MIMO Communication Using 1-Bit Converters", submitted to IEEE Transactions on Vehicular Technology, Feb 2023.
"An Innovative Secure & Energy Efficient Sub-Terahertz Wireless System for 6G", INL Invention Disclosure Record (IDR) BA-1289.

Project Number: 22A1059-031FP

LRS Number: INL/MIS-23-74197

www.inl.gov

Work supported through the INL Laboratory Directed Research & Development (LDRD) Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517.

Battelle Energy Alliance manages INL for the U.S. Department of Energy's Office of Nuclear Energy

Red Teaming Artificial Intelligence: Investigating the utility of red team security audits on machine learning

Jed Haile, Idaho National Lab Dr Mike Borowczak, University of Wyoming

Project Number: 21A1050-088FP

www.inl.gov

Work supported through the INL Laboratory Directed Research & Development (LDRD) Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517."

Method:

- Investigate deployment scenarios and technologies
- Search for reported vulnerabilities and exploits
- systems are applicable and sufficient
- on the most used tools and models

Outcomes:

- Rapidly changing target environment and rapid development have led to short time frames betw vulnerability disclosure and mitigation
- The trend is moving from self hosting to using cl providers such as OpenAI and Azure
- Popular machine learning frameworks do not inc functionality to expose the model on a network, access to the model is in process only
- Typical deployment scenario is a simple REST AP providing a prediction or generation endpoint rein a small attack surface
- Models are trained on large corpora of diverse of meaning input validation is strong by necessity

Code metrics of popular machine learning Historic CVE trends for CUDA enabled frameworks hardware

				Year	Matches	Total	Percentag
Framework Files			Lines of Code	2006	2	6608	0.03%
	Files	All Lines		2007	1	6516	0.02%
				2008	0	5632	0.00%
		576 107,928	80,256	2009	0	5732	0.00%
Caffa				2010	0	4639	0.00%
Calle	570			2011	4	4150	0.10%
				2012	2	5288	0.04%
		L9 3,310,964	4 2,465,296	2013	4	5187	0.08%
				2014	3	7937	0.04%
Tanaarflau				2015	8	6487	0.12%
lensomow	11,219			2016	43	6447	0.67%
				2017	60	14643	0.41%
				2018	24	16509	0.15%
		1,141,599	903,967	2019	43	17305	0.25%
				2020	48	18350	0.26%
PyTorch	5,451			2021	107	20158	0.53%
, , ,				2022	92	25101	0.37%
				2023	73	18443	0.40%

LRS Number: INL/MIS-23-74386 Rev:000

Battelle Energy Alliance manages INL for the U.S. Department of Energy's Office of Nuclear Energy

• Identify commonly used AI/ML toolkits, application programming interfaces Determine if tactics and techniques used in red team attacks on Enterprise Research the difficulty, expense and impact of novel vulnerability research

rates of ween	 Machine learning programming uses specialized tools and techniques which are uncommon in general programming
loud	 Fuzzing and static code analysis were not productive, indicating developers use these techniques
clude	 Student researchers with knowledge of
, direct	vulnerabilities and machine learning are not available
ו	 Experienced vulnerability researchers found it
esulting	challenging to audit these systems due to the highly specialized nature of machine learning code
origin,	 Effective red team assessment of requires the development of knowledge, tools and techniques specific to the domain

Idaho National Laboratory

Identifying anomalies in 5G networks via deep packet inspection of the payload with the use of machine learning deployed on a FPGA.

Objective 1: Analyze

As the packets move across the network, they are inspected by the machine learning program. The header is ignored because the program focuses on the payload.

Objective 2: Detect

Based on the training of the autoencoder and classifier, the program will be able to detect if there is anomalous data in packets. Anomalous data includes malware and unusual network traffic.

Objective 3: Visualize

Each packet is plotted on a graph in the cluster that they belong to spatially. The packets are also classified into different

categories and visualized in different colors.

Viruses Tested

- Nonstop_Virus
- Backdoor_payload
- Lokibot
- Putingods

- •Sandworm
- •Vawtrak
- Trickbot

PI: Matthew Anderson

www.inl.gov

Ben Mahoney Brian Allen **Brighton Roskelley** Denver Conger

FPGA

Malware Server

- Field Programmable Gate Arrays(FPGA) are integrated circuits designed to be customized after manufacturing.
- This design is capable of handling large amounts of incoming data through parallelism.
- We then use our AI to detect anomalous data and visualize it with very little latency, or delay.
- The FPGA we used, the Xilinx ZCU104, currently uses around 10W of power compared to the power draw of the Nvidia A100, at 400W.

Keaton Roberts

- traffic.

Green – normal network traffic Red – anomalous network traffic Patents: 17/663,883

BA-1503

Software Disclosures: CW-23-34

Gitlab.com/IdahoLabResearch/5GAD

Publications: "Machine Learning 5G Attack Detection in Programmable Logic", 2022 IEEE Globecom doi:10.11578/dc.20220811.1

"Machine learning models for network traffic classification in Programmable Logic", 2022 IEEE HST doi:10.1109/HST56032.2022.10025442

Battelle Energy Alliance manages INL for the U.S. Department of Energy's Office of Nuclear Energy

Automated
Malware Analysis
Via Dynamic Sandboxes
Presenter: Michael Cutshaw
 BACKGROUND: Manual malware analysis: Requires specialized labor Time consuming Does not scale Analysis through sandboxes: Captures behaviors: IP addresses Domain names Files modified or read System calls Rapid analysis Highly scalable Current state of the art (sandboxes): Unaggregated results focuses on malicious/benign classification Sandbox specific output Our Solution: Translates individual results into STIX: Interoperable Graph enables aggregated analysis Leverages virtualization for: Wide range of processor architectures
ICS/Embedded emulation
https://github.com/idaholab/cape2stix

Emotet malware being linked based on shared IP addresses

samples samples

Project Number: 22A1059-060FP

www.inl.gov

Work supported through the INL Laboratory Directed Research & Development (LDRD) Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517."

Scalable dynamic malware analysis framework. In a shareable, graph format.

Determine similarities through shared behavior

Automatic linking based on behavior hashing

~90,000 executed

- Over 600,000
- collected total

Single malware sample with all behaviors (shown in STIG)

LRS Number: INL/EXP-23-74295

Battelle Energy Alliance manages INL for the U.S. Department of Energy's Office of Nuclear Energy

*Represents results from first 20,000 samples analyzed

Michael Cutshaw, Will Brant, Zachary Priest, Bryan Beckman, Micah Flack, Taylor McCampbell

Signal Decomposition for Intrusion Detection

in Reliability Assessment in Cyber Resilience

Paul Talbot, Dylan McDowell, Bri Rolston, Xingyue Yang, Luis Nunez, Blaine Bockholt, Idaho National Laboratory Hany Abdel-Khalik, Yeni Li, Tyler Lewis, Purdue University

Background and Motivations

We can numerically assess the difference between our known and unknown signals by applying a distance metric that will categorize the signal as "Genuine" or "Anomaly."

process interactions becomes challenging as the system becomes more interconnected, such as in nuclear-hydrogenrenewable energy grids.

systems with complex physical

access to a system and cause damage by "spoofing" signals coming from installed sensors.

malicious intent may gain

of different characterization methods that will compare characteristics from a known signal with an incoming unknown signal.

to the signal by using a toolbox

eye but are much more apparent when the signal is transformed into a different characterization space.

might be invisible to the naked

Implementation

- Novel software: Signal Oriented Network Anomaly Recognition (SONAR)
- Built on Risk Analysis Virtual ENvironment (RAVEN) framework
- SONAR is accessible to Purdue and INL researchers for training and detecting anomalies in digital-physical signals
- Enables automated formatting, construction, and analysis of signal anomaly detection scenarios with comprehensive documentation and data visualization tools

Summary

- Identifies anomalies in datasets using distance metrics and data-based decomposition techniques
- Particularly adept at detecting subtle and distant anomalies, such as identifying adversarial attacks in sensor data for critical infrastructure protection

Case study: Seismic Event

Safe nuclear reactor systems monitor seismic activity to respond to significant events. SONAR demonstrates detecting anomalous false data injections that are too subtle to be seen by the eye, but are clearly different in characterization space

OriginalTransformedReal vs. Attacked Seismic Data, Time Domain5000Winknown5000Winknown5000Winknown42500Winknown<t

Case study: RELAP5 Simulation

SONAR can also be used in digital twin applications, such as using RELAP to monitor system thermal hydraulics. This example case considers coolant temperature at reactor core inlet of a nuclear reactor, and a subtle perturbation injected to the signal.

- Demonstrates versatility in many applications, such as nuclear reactor simulations, seismic events, and 3D printing temperature monitoring
- Showcases broad usability across diverse data types and settings

What's Next?

- Enhanced application through multi-signal correlation and regime detection, yielding significant detection improvement
- Future research potential in refining software usability for non-developer experts and exploring new directions
- Building on established research foundation to seize opportunities in advancing SONAR capabilities

Case study: 3D Printing

In 3D printing for complex materials, temperature pools are measured to ensure correct behavior. SONAR detects even subtle data changes to the measured temperatures. Injecting data into an additive manufacturing process may result in compromised components downstream.

Original

Transformed

Project Number: 21A1050-024FP LRS Number: INL/EXP-23-74091

Development (LDRD) Program under DOE Idaho Operations Office

Contract DE-AC07-05ID14517

A quantitative approach to multiple critical supply chain resilience assessment

PRESENTERS: Julia Morgan & Ruby Nguyen

BACKGROUND

Food & Agriculture is one of 16 critical infrastructure sectors. This supply chain is subjected to both supply and demand disruptions. Quantifying disruption impacts would help improve this supply chain's resilience.

Project Number: 21A1050-082FP

www.inl.gov

Work supported through the INL Laboratory Directed Research & Development (LDRD) Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517."

Figure 2: Simulation model snapshot

Transportation disruptions have minimal

LRS Number: INL/EXP-23-74229

Battelle Energy Alliance manages INL for the U.S. Department of Energy's Office of Nuclear Energy

Figure 5: Flow of information for agent-based modeling simulation

Figure 6: Visualization of inventory level fluctuation throughout the agent-based model simulation

Agricultural Systems Volume 201, August 2022, 103469

Multi-level impacts of climate change and supply disruption events on a potato supply chain: An agent-based modeling approach

Md Mamunur Rahman ^a 🝳 🖂 , Ruby Nguyen ^a 🖂 , Liang Lu ^b 🖂

Ruby Nguyen, Ryan Hruska, Steven Hall, Julia Morgan, Trevor Baker, Mamunur Rahman, Wael Khallouli, Liang Lu, Yuan-Yuan Lee, Barry Ezell

Idaho National Laboratory